Hard
A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.
The path sum of a path is the sum of the node’s values in the path.
Given the root
of a binary tree, return the maximum path sum of any non-empty path.
Example 1:
Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
Example 2:
Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
Constraints:
[1, 3 * 104]
.-1000 <= Node.val <= 1000
#include <algorithm>
#include <climits>
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
private:
int maxSum;
int helper(TreeNode* root) {
if (root == nullptr) {
return 0;
}
// to avoid negative values on the left side, we compare them with 0
int left = std::max(0, helper(root->left));
int right = std::max(0, helper(root->right));
int current = root->val + left + right;
maxSum = std::max(maxSum, current);
return root->val + std::max(left, right);
}
public:
int maxPathSum(TreeNode* root) {
maxSum = INT_MIN;
helper(root);
return maxSum;
}
};